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Abstract: Automatically obtaining the pose of 3D object is one of the difficulties in computer 
vision. In this paper, feedback control theory is used to solve these problems. It is mainly a dynamic 
target cognitive mechanism with a supervision controller and virtual vision servo controller. 
Supervisory controller finds the potential matching feature sets according to the feature 
performance evaluation index, and virtual vision controller gets the possible pose and the integral 
error under matching hypothesis. The supervisory controller switches in the candidate matches until 
the integral error is less then specific threshold, then the corrected matchers are found. The 
augmented reality experiment shows the effectiveness and robustness of the algorithm at the end. 

1. Introduction  
Visual servo control[1] refers to the use of computer vision data to control the motion of a robot. 

Visual servo control relies on techniques from image processing, computer vision, and control theory. 
There are two very different approaches because of the desired features, generally, one is the 
position-based visual servo control (PBVS)[2], in which desired features consist of a set of 3-D 
parameters, which must be estimated from image measurements in deed; the other is the image-
based visual servo control (IBVS), in which desired features consist of a set of features that are 
immediately available in the image data. 

The virtual visual servo(VVS)[3], an eye-in-hand method based on IBVS, deals with the 
registration problem in augmented reality, in this algorithm the controlled object is not a physical 
one but a virtual camera. The image errors are eliminated by change the position of virtual camera. 
While in [4], firstly assumed the world coordinate is concentric with the camera coordinate , the 
controlled object is a virtual model (checkerboard as an example) which consists of 3D data at a 
proper initial pose; secondly the algorithm makes the pose of the virtual model move constantly to 
pose 1,pose2…, reduces the error between the projection image and the real image; eventually when 
the image error is minimum, the virtual model  and real object get overlapped in three-dimensional 
space, namely realizes pose estimation of real object. One of the differences between traditional 
VVS[3] and ours is that the control object is the virtual model not the virtual camera; it is easier and 
more accurate to get the 3D position estimation by our VVS. These methods can only guarantee for 
the local asymptotic or local convergence[5]. 

The VVS methods need to compare the detected image features information and the ones 
projecting from virtual model in 3D frame to get the 3D pose estimation. It is in essence to the 
problem of PNP[7]. PNP problem can be divided into two categories: the iteration method and the no-
iteration one. The iteration method[8] can get more accuracy solution by the minimum iteration 
strategy based on nonlinear cost equation. Its drawbacks are too depending on the initial assumption 
and high complex computation[9] put forward no-iteration algorithm with O(n), and has high 
efficiency. However it is not stable in noise environment, especially when n is less than or equal to 
5.What’s more, dealing the stability and accuracy of the camera pose estimation problem under 
quasi-singular case are lack of effective theoretical analysis and technical method. P3P issue[10] is the 
minimum subset of PNP. Estimating the object’s real pose with three feature points is a typical 
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multiple solution problem[11] and it can get four space poses at most[12]. But the current solutions 
about P3P or PNP are under the hypothesis that the feature points are matched correctly. However, 
feature automatic and accurate matching is a difficulty in computer vision.  

The right match is that there is a one-to-one correspondence between image features and the 
corresponding object in 3D space. When mismatching occurs, PNP analytical algorithm will 
construct a wrong and fictive 3D object which does not exist at all. This 3D object satisfies the PNP 
equation forever, so the PNP algorithm cannot find such a mismatching phenomenon.  

In real scene, the detected features from the image are more than the expected ones on the model, 
so how to pick the right matching feature sets automatically? How to get the only one right pose? 
How to get out of the local convergence in the process of VVS[4,12,13]? To solve all these problems, 
supervisory control theory based on VVS is introduced in this paper. 

The algorithm uses the image square error as the performance evaluation index of supervisory 
control to get automatic and accurate feature matching and obtains the accurate 3D pose of object. 
The AR experiment shows the feasibility of our algorithm. In the remainder of the paper the 
principle of the approach is presented, and the algorithm flow details are shown. Brief introduction, 
results and comparison with the traditional VVS method are given in the experiment part. Finally, 
the conclusions are made in this paper. 

2. Supervisory Control based VVS 

Suppose 3D features M
iP  , i =1…n, on a rigid model M (t, R), where t and R are transition and 

rotation matrices with respect to the world coordinates. The corresponding image features are M
if  at 

M
iP , i=1…n. 

1) Capture an image I and extract feature pi and their feature vectors fi. 
2) Match M

if  ,i=1…n, with fi and sort in descending order by similarity. 
3) Pick up the top three points pi , i=1…3, which correspond to M

iP  in the model. Calculate k 
initial poses M (t1, R1), M (t2, R2)… M(tk,Rk)with the three points pi for virtual visual servo. 

4) Repeat capturing image for the pi (t), i=1..3, and tracking M
if ; in a fixed sampling period, the 

following a), b) and c) are continuously performed for several times. 
• Visual servo for the right matching points 
Define tracking error to be T

1 2 3e(k)=[e (k) e (k) e (k)] , where M(k)
i i ie (k)=p p− , i 1, 2,3= and k 1,2,3,4= .We 

introduce a modified error with deadzone 

                                e (k)=e(k) φ(k)∆ −                                 (1) 

where T1 1 1e (k) e (k) e (k)( ) [ sat( ) sat( ) sat( )]
ε ε ε

kϕ =    with dead zone width ϵ. According to formula (1), 

we know that the image mean error can be controlled in dead zone when the feature points are 
matched correctly. 

• Supervisory control for initial pose 
Define a monotonically non-decreasing cost function I(k,t) as 

t n
Δii=00

I(k,t)= e (k,t) dt∑∫ .                          (2) 

Let jk̂ K={k:1,2,3,4}∈ and j=0 is selected as the initial pose or visual servo based AR. At time t 
during the visual servo, if j k K

ˆI(k ,t)>min I(k,t)+ε∈ , then j=j+1 and 

j k Kk̂ arg min I(k,t)∈= , 

jk̂  is selected for visual servo based AR after time t. 
• Falsified poses 
Definition: A pose k∈K is said to be falsified by measurement information if this information is 
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sufficient to deduce that the performance specification (p,e(k),u(k))∈Tspec would be violated if the 
object was controlled from the kth  pose. Otherwise the pose k is said to be unfalsified. 

Consider a γ dependent performance specification 

specT {p,e,u I(k,t) γ}= ≤  

Where γ is a positive threshold and design parameter; if for a given pose, the performance index 
exceeds this threshold at any time, it is not suitable for the actual unknown object and hence is 
falsified and taken out of the candidate pose set. Switching is done among as yet unfalsified 
candidate controllers only. 

If all of the current 4 poses are falsified, go to step 1 for detecting new candidate poses. 

3. Experiments 

3.1 Experimental Conditions 
In practice, it is hardly to get the actual 3D pose of object. Augmented reality (AR) is a live direct 

or indirect view of a physical, real-world environment whose elements are augmented (or 
supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. The 
3D registration, which means that the coordinate system of virtual model and that of the real object is 
overlapped, is a key step in vision based AR. Our algorithm in which the 3D pose is estimated 
realizes the 3D registration in deed. The experiment shows AR effects based on a color cube by 
augmenting a teapot in the specific position. 
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Figure 1.  The virtual cube model. 

Build a 3D color cube in which the length is 100mm. Every face of the model is filled with 
different colors Teapot model. 
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Figure 2.  The teapot model. 

In our paper, the coordinate system is attached on 4th vertex of the cube where the teapot is 
augmented. That is to say, whatever the pose of 3D cube is, the teapot will be augmented on the 
coordinate system of 4th vertex. 

After the 3D pose of cube is estimated, the camera intrinsic parameters are used to get the image 
of AR objects. 

3.2 Experiment Steps 
Step 1 Do VVS 
Choose the vertexes of the most possible relationship 1f  as the initial matcher; we will get 2 

possible poses used 3 points by P3P. Take them as the initial pose for virtual vision servo 
respectively, after VVS the corresponding image mean square errors is shown as Fig 3. And t 
presents time presents the value of MSE. Fig 4 shows the actual teapot pose after virtual vision servo, 
clearly it is wrong. 
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t:0.67
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Figure 3.  The integral square errors. 

 
Figure 4.  The end pose after VVS. 

Step 2  Make switch decision based on supervisory control 
Under the intervention of supervisory control, it finally switches to the correct matching feature 

set, namely realizing automatic object recognition. After that, the image MSE changes with the 
changing frames, and the change value depends on the camera’s velocity. At end, it converges to 
global minimum, and the correct AR results of 1st input image are show in figure 5.  

 
Figure 5.  AR Results of 1st input image. 

4. Conclusion 
Our algorithm based on the existing performance evaluation function, logic switching evaluates n 

possible feature sets, and selects one possible feature set which matches the target object, and makes 
this feature set as the input of virtual visual servo. In addition, logic switching should switch among 
all the possible space poses. By this way the algorithm can reject the uncorrected matchers and can 
get the pose of 3D object automatically. The proposed algorithm can get global convergence value 
with any initial pose. It’s more robust, accurate and can be widely used in AR. There are several 
advantages in this paper as following: a) Use feedback control method to solve vision cognition 
problem; b) Switch in the alternative candidate feature sets with supervisory controller; c) Make full 
use of the matching relationships on the 3D model, and achieve the accurate feature matching with 
the internal exercise of VVS; d) Solve the problem of 3D pose estimation and tracking as well as 
object recognition. 
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